Palladium-Catalyzed Cascade Reactions of Isocyanides with Enaminones: Synthesis of 4-Aminoquinoline Derivatives

Zheng-Yang Gu, ${ }^{\dagger}$ Tong-Hao Zhu, ${ }^{\dagger}$ Jia-Jia Cao, Xiao-Ping Xu, Shun-Yi Wang,* and Shun-Jun Ji*
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

Supporting Information

ABSTRACT: A method for palladium-catalyzed cascade reactions of isocyanides with enaminones has been developed. This methodology provides a direct approach to 4 -aminoquinoline derivatives under mild conditions with up to 98% yields.

KEYWORDS: isocyanide, cascade reaction, amino quinoline, palladium

The quinoline moiety is one of the most important skeletons found in numerous heterocycles, and many quinoline derivatives ${ }^{1}$ have been employed in the manufacture of dyes, drugs, as well as important synthetic intermediates and building blocks. ${ }^{2,3}$ Among them, 4 -aminoquinolines have attracted special research interest ${ }^{4-7}$ because they are useful antimalarial agents in treating erythrocytic plasmodial infections (Figure 1). For example, amodiaquine IV is used as an

phenylequine, VI

Figure 1. Representative examples of quinolone and 4-aminoquinoline.
antimalarial drug and anti-inflammatory agent. ${ }^{4}$ Chloroquine \mathbf{V} was discovered in 1934 and has been used as an antimalarial drug for more than half century. ${ }^{5}$ Phenylequine VI shows good antimalarial activity. ${ }^{6}$ The antimalarial ferroquine VII (FQ, SSR97193) is currently the most advanced organo-metallic drug candidate. ${ }^{7}$

During the past ten years, cascade reactions have been attracted great attention for their applications in the construction of complex molecules as well as natural products,
which have undeniable advantages such as only a single workup procedure and purification step without the isolation of the intermediates and are looked upon as an atom and step economical benign strategy for the construction of complex molecules. ${ }^{8,9}$ Recently, our group have been focused on the research of cascade reactions ${ }^{10}$ based on isocyanides ${ }^{11}$ to construct different molecules as well as complex heterocycles. As part of our research in this field, we herein report a practical synthetic strategy for the synthesis of 4 -aminoquinoline derivatives by a palladium-catalyzed ${ }^{12}[5+1]$ cascade annulation of isocyanides with functionalized enaminones (Scheme 1).

Scheme 1. Reaction of Indolyl Alcohol Derivatives with Nucleophiles

Initially, the model reaction of 3-((2-iodophenyl)amino)-5,5-dimethylcyclohex-2-enone 1a (easily prepared from the corresponding amine with diketone) and tert-butyl isocyanide 2a was performed in toluene at $110^{\circ} \mathrm{C}$ for 12 h catalyzed by 10 $\mathrm{mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ in the presence of 2 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$. To our delight, the desired $[5+1]$ cascade annulation 4 -aminoquinoline 3a could be obtained in 53\% LC yield (Table 1, entry 1). Only trace or poor yield of 3a was obtained when the reaction was carried using $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{NaOAc}$, KOAc, or DABCO (Table 1, entries 2, 4, and 5). When other bases such as $\mathrm{K}_{3} \mathrm{PO}_{4}$, CsOAc , and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ were screened for this reaction, it was found that $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was the best additive for this reaction, and the LC yield of 3a was increased to 76% (Table 1, entries 3, 7

[^0]Table 1. Screening of Reaction Conditions: Effects of Catalyst and Base ${ }^{a}$

${ }^{a}$ Reaction conditions: 1a $(0.5 \mathrm{mmol})$, 2a $(100 \mu \mathrm{~L})$, toluene $(3 \mathrm{~mL})$, base (2 equiv), $12 \mathrm{~h} .{ }^{b}$ Yields were determined by LC with an internal standard (biphenyl) as the ratio between the formed products and the initial amount of limiting reactant.
and 9). We further tested other palladium catalysts including $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2}, \operatorname{Pd}(\mathrm{dba})_{2}, \mathrm{PdCl}_{2}, \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, and $\operatorname{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}$ and found that $1 \mathrm{~mol} \% \operatorname{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}$ was enough to catalyze this reaction and generated 3 a in 68% LC yield (Table 1, entry 14). The control experiment indicated that no product was formed in the absence of palladium catalyst (Table 1 , entry 15). Satisfactorily, the change of the amount of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ to 3 equiv lead to 3a in 79% LC yield (Table 2, entry 3). Further investigations by screening the solvent revealed that the yield of 3a could be increased to 90% LC yield (88% isolated yield) when the reaction was carried out in 1.4-dioxane at $110^{\circ} \mathrm{C}$.

Under the optimized reaction conditions, the scope of this [5 $+1]$ annulation reaction was explored using various substituted

Table 2. Screening of Reaction Conditions: Effects of Solvent and Base ${ }^{\text {a }}$
(toluene
${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.5 \mathrm{mmol}), \mathbf{2 a}(0.6 \mathrm{mmol})$, solvent $(3 \mathrm{~mL})$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (x equiv), and $\mathrm{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}(1 \mathrm{~mol} \%), 12 \mathrm{~h} .{ }^{b}$ Yields were determined by LC-MS with an internal standard (biphenyl) as the ratio between the formed products and the initial amount of limiting reactant. ${ }^{c}$ Isolated yield.
enaminone 1 with isocyanides 2 . As shown in Table 3, the 3aryl enaminone bearing methyl group or Cl group participated

Table 3. Synthesis of 4-Aminoquinoline Derivatives ${ }^{a, b}$

${ }^{a}$ Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol})$, 2a (0.6 mmol), 1.4-dioxane (3 $\mathrm{mL}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (3 equiv), and $\operatorname{Pd}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}(1 \mathrm{~mol} \%) .{ }^{b}$ Isolated yield.
in the annulation reaction equally efficiently, which furnished the desired 4 -aminoquinoline derivatives $\mathbf{3 b} \mathbf{- d}$ in very similar good yields (87% to 89% yields). When disubstituted enaminone 3-((4-chloro-2-fluoro-6-iodophenyl)amino)-5,5-di-methylcyclohex-2-enone 1 f was subjected to the reaction, the desired product 3 f could be even obtained in 98% yield, which was further confirmed by X-ray analysis (Figure 2). When the 3 -aryl enaminone 3 e bearing strong electron withdrawing group was applied to the reaction with 2 a , desired product 3 e could also be isolated in 51% yield.

The [5 + 1] annulation reactions of 9-(tert-butylamino)-2,2-dimethyl-3,4-dihydroacridin-1 2 H)-one $\mathbf{1 g}$ and 9-(tert-butyla-mino)-6-chloro-2,2-dimethyl-3,4-dihydroacridin-1(2H)-one 1h with 2 a afforded the desired products 3 g and 3 h in 87% and 91% yields, respectively. Other substituted enaminones $\mathbf{1 i}-\mathbf{n}$ reacting with $\mathbf{2 a}$ furnished the desired products $\mathbf{3 i}-\mathbf{n}$ in good to excellent yields (71% to 98%). It was also found that the reaction of 4-((2-iodophenyl)amino)pent-3-en-2-one 10 with 2a could also lead to the desired product 30 in 23% yield, because of the poor stability of $\mathbf{1 0}$.

Subsequently, enaminones 3-((2-chlorophenyl)amino)-6,6-dimethylcyclohex-2-enone $\mathbf{1 p}$ and 3-((2-bromophenyl)amino)-6,6-dimethylcyclohex-2-enone $\mathbf{1 q}$ instead of 1 a were applied to

Figure 2. Crystal structure of $\mathbf{3 f}$.
reaction with $\mathbf{2 a}$. It was found that chloro-functionalized enaminone $\mathbf{1 p}$ showed poor reactivity and bromo-functionalized enaminone $\mathbf{1 q}$ showed competitive reactivity compared to iodo-functionalized enaminone 1a (Scheme 2).

Scheme 2. Reaction of $\mathbf{1 p}-q$ with 2 a

Additionally, the scope of isocyanides was investigated under the optimal conditions. However, when isocyanocyclohexane was subjected to the reaction with $\mathbf{1 a}$, only 30% desired product 4 a was obtained. When isocyanocyclohexane was replaced by 2 isocyanopropane $\mathbf{2 b}$, the desired products $\mathbf{4 b}$ and $\mathbf{4 c}$ could be obtained in 43% and 40% yields, respectively. When 1 adamantyl isocyanide was subjected to the reaction with $\mathbf{1 d}$, 4d could be isolated in 61% yield. Unfortunately, some other isocyanides such as (isocyanomethyl)benzene and 2 -isocyano-1,3-dimethylbenzene decomposed under the established conditions and no desired product was formed (Table 4).

To explore the diversity application of the prepared 4aminoquinoline derivative 3 , we tried the reaction of $3 \mathbf{d}$

Table 4. Reaction of 1 a with Other Isocyanides ${ }^{a}$

[^1]catalyzed by I_{2} under O_{2} conditions. It was found dicarbonyl functionalized 4 -aminoquinoline derivative $\mathbf{3 \mathbf { d } ^ { \prime }}$ could be easily obtained in 66% yield (Scheme 3).

Scheme 3. Iodine-Promoted Reaction of 9-(tert-
butylamino)-6-chloro-3,3-dimethyl-3,4-dihydroacridin-
$1(2 H)$-one 3 d under O_{2} Condition

3d
3d', 66\%

To better understand the mechanism of the reaction, we tried the reaction of $\mathbf{1 a ^ { \prime }}$ with $\mathbf{2 a}$ under identical reaction conditions. It was found that no desired product 3 a was found when enaminone $\mathbf{1 a} \mathbf{a}^{\prime}$ was used instead of $\mathbf{1 a}$ (Scheme 4).

Scheme 4. Control Experiment

On the basis of the above results and the related literatures, ${ }^{12,13}$ a plausible mechanism is proposed in Scheme 5. A palladium(II) complex A was formed via the oxidative addition of 1 a to the $\operatorname{Pd}(0)$ catalyst. The insertion of isocyanide

Scheme 5. Plausible Mechanism

leads to the formation of palladium(II) complex B, followed by the reductive elimination to give the intermediate \mathbf{C} and $\operatorname{Pd}(0)$ catalyst. Subsequently, the $\mathrm{sp}^{2} \mathrm{C}-\mathrm{H}$ bond at α-position of carbonyl group is activated under the base conditions to generate the new 6 member ring complex \mathbf{D}. After cascade $1,5-$ H shift, the desired [$5+1$] cyclization product 4 -aminoquinoline derivative is formed.

In summary, we have developed palladium-catalyzed cascade reactions of isocyanides with enaminones for the $[5+1]$ cyclization reaction of enaminones with isocyanides. This protocol provides a new and straightforward approach to 4aminoquinoline derivatives under mild conditions. This protocol also opens a way to explore new drugs based on 4aminoquinoline derivatives for their potential high antimalarial activities.

ASSOCIATED CONTENT

(S) Supporting Information

Experimental procedures and full spectroscopic data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: shunyi@suda.edu.cn (S.-Y.W.).
*E-mail: shunjun@suda.edu.cn (S.-J.J.).

Author Contributions

${ }^{\dagger}$ These authors contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We gratefully acknowledge the Natural Science Foundation of China (No. 21172162, 21372174), the Young National Natural Science Foundation of China (No. 21202111), the Young Natural Science Foundation of Jiangsu Province (BK2012174), Key Laboratory of Organic Synthesis of Jiangsu Province (KJS1211), PAPD, and Soochow University for financial support.

REFERENCES

(1) (a) Michael, J. P. Nat. Prod. Rep. 1997, 14, 605. (b) Balasubramanian, M.; Keay, J. G. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon Press: Oxford, U.K., 1996; Vol. 5, Chapter 5.06. (c) Leue, S.; Miao, W.; Kanazawa, A.; Genisson, Y.; Garcon, S.; Greene, A. E. J. Chem. Soc., Perkin. Trans. 1 2001, 2903. (d) Comins, D. L.; Nolan, J. M. Org. Lett. 2001, 3, 1611. (e) Rigby, J. H.; Danca, D. M. Tetrahedron Lett. 1997, 38, 4969.
(2) (a) Samosorn, S.; Bremner, J. B.; Ball, A.; Lewis, K. Bioorg. Med. Chem. 2006, 14, 857. (b) Foley, M.; Tilley, L. Pharmacol. Ther. 1998, 79, 55. (c) Spicer, J. A.; Gamage, S. A.; Atwell, G. J.; Finlay, G. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1997, 40, 1919. (d) Lyon, M. A.; Lawrence, S.; William, D. J.; Jackson, Y. A. J. Chem. Soc., Perkin Trans. 1 1999, 437.
(3) (a) Mirallai, S. I.; Manoli, M. L.; Koutentis, P. A. J. Org. Chem. 2013, 78, 8655. (b) Singh, P. P.; Aithagani, S. K.; Yadav, M.; Singh, V. P.; Vishwakarma, R. A. J. Org. Chem. 2013, 78, 2639. (c) Hakki, A.; Dillert, R.; Bahnemann, D. R. ACS Catal. 2013, 3, 565. (d) Beckers, N.; Huynh, S.; Zhang, X.; Luber, E. J.; Buriak, J. M. ACS Catal. 2012, 2, 1524.
(4) (a) Raynes, K. J.; Stocks, P. A.; O'Neill, P. M.; Park, B. K.; Ward, S. A. J. Med. Chem. 1999, 42, 2747. (b) O'Neill, P. M.; Willock, D. J.; Hawley, S. R.; Bray, P. G.; Storr, R. C.; Ward, S. A.; Park, B. K. J. Med.

Chem. 1997, 40, 437. (c) Gorka, A. P.; de Dios, A.; Roepe, P. D. J. Med. Chem. 2013, 56, 5.
(5) (a) Andayi, W. A.; Egan, T. J.; Gut, J.; Rosenthal, P. J.; Chibale, K. ACS Med. Chem. Lett. 2013, 4, 642. (b) Gildenhuys, J.; le Roex, T.; Egan, T. J.; de Villiers, K. A. J. Am. Chem. Soc. 2013, 135, 1037. (c) Combrinck, J. M.; Mabotha, T. E.; Ncokazi, K. K.; Ambele, M. A.; Taylor, D.; Smith, P. J.; Hoppe, H. C.; Egan, T. J. ACS Chem. Biol. 2013, 8, 133.
(6) Blackie, M. A.; Yardley, V.; Chibale, K. Bioorg. Med. Chem. Lett. 2010, 20, 1078.
(7) (a) Biot, C.; Taramelli, D.; Forfar-Bares, I.; Maciejewski, L. A.; Boyce, M.; Nowogrocki, G.; Brocard, J. S.; Basilico, N.; Olliaro, P.; Egan, T. J. Mol. Pharmaceutics 2005, 2, 185. (b) Biot, C.; Nosten, F.; Fraisse, L.; Ter-Minassian, D.; Khalife, J.; Dive, D. Parasite 2011, 18, 207. (c) Dubar, F.; Khalife, J.; Brocard, J.; Dive, D.; Biot, C. Molecules 2008, 13, 2900.
(8) (a) Trost, B. M. Science 1991, 254, 1471. (b) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew. Chem., Int. Ed. Engl. 1995, 34, 259. (c) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, U.K., 2000, p 135. (d) Matlack, A. S. Introduction to Green Chemistry; Marcel Dekker: New York, 2001, p 570. (e) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (f) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167.
(9) (a) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2006; p 672. (b) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105, 137; Angew. Chem., Int. Ed. Engl. 1993, 32, 131. (c) Tietze, L. F. Chem. Rev. 1996, 96, 115. (d) Pellissier, H. Tetrahedron 2006, 62, 1619. (e) Ho, T.-L. Tandem Organic Reactions; Wiley: New York, 1992; p 502.
(10) (a) Hao, W.-J.; Wang, S.-Y.; Ji, S.-J. ACS Catal. 2013, 3, 2501. (b) Hao, W.-J.; Xu, X.-P.; Wang, S.-Y.; Bai, H.-W.; Ji, S.-J. Org. Lett. 2012, 14, 4894. (c) Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2012, 14, 6068. (d) Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2013, 15, 5226. (e) Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Adv. Synth. Catal. 2013, 355, 2686. (11) (a) Wang, X.; Xu, X.-P.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2013, 15, 4246. (b) Wang, X.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2013, 15, 1954. (c) Zhu, T.-H.; Wang, S.-Y.; Wang, G.-N.; Ji, S.-J. Chem.-Eur. J. 2013, 19, 5850. (d) Zhao, L.-L.; Wang, S.-Y.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2013, 49, 2569. (e) Wang, R.; Xu, X.-P.; Meng, H.; Wang, S.-Y.; Ji, S.-J. Tetrahedron 2013, 69, 1761.
(12) Excellent review, see: Vlaar, T.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Angew. Chem., Int. Ed. 2013, 52, 7084.
(13) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677.

[^0]: Received: October 10, 2013
 Revised: November 27, 2013
 Published: December 2, 2013

[^1]: ${ }^{a}$ Isolated yields.

